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� This study proposed an improved PSO algorithm for MPPT in PV module arrays.
� A MPPT that incorporated shading and failure conditions in PV array is developed.
� The proposed MPPT method was built using improved particle swarm optimization.
� The proposed PSO algorithm can perform MPPT for multi-peak P–V characteristic curves.
� The proposed PSO algorithm exhibited superior tracking speed, response, and accuracy.
a r t i c l e i n f o

Article history:
Received 27 January 2015
Received in revised form 2 August 2015
Accepted 15 August 2015
Available online 14 September 2015

Keywords:
Maximum power point tracking
Particle swarm optimization
Partial module shading
Module failure
a b s t r a c t

In this paper, a maximum power point tracking (MPPT) method that incorporated shading and failure
conditions in photovoltaic (PV) module arrays is developed. This MPPT method was built using improved
particle swarm optimization (PSO). The PSO algorithm enables PV module arrays to perform MPPT for
multi-peak power–voltage (P–V) output characteristic curves when shading or failures occur. This
facilitates the tracking of actual maximum power points in PV module arrays. The HIP 2717 PV module
produced by SANYO Electric Co., Ltd. was used in this study to assemble various array configurations. The
characteristic curves of these array configurations when partial module shading or failure occurred were
investigated. Numerous working conditions were selected for dual-peak, three-peak, and four-peak
characteristics. PIC microcontrollers were then used to apply both the traditional and the proposed
PSO algorithms to enable MPPT. A comparison of the measurement results showed that the proposed
PSO algorithm exhibited superior tracking speed, response, and accuracy, compared with those of the
traditional PSO algorithm.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Photovoltaic (PV) power generation systems are composed of
PV module arrays, power conditioners, and power transmission
and distribution systems. Irradiation and environmental tempera-
ture changes directly affect the output power of PV module arrays,
resulting in significant variations. Therefore, maximum power
point tracking (MPPT) technology must be used to control PV mod-
ule arrays to maximize power output. The majority of early MPPT
methods have emphasized the use of traditional techniques [1–5],
such as voltage feedback [1] and the constant voltage [2], power
feedback [3], perturb and observe [4], and the incremental conduc-
tance methods [5]. However, these traditional MPPT methods are
inappropriate for working conditions in which partial module
shading or failures can occur in PV module arrays. This is because
the power–voltage (P–V) characteristics of PV module arrays dis-
play dual-peak or multi-peak characteristics when partial module
shading or failures occur [6–8]. Traditional MPPT methods can only
track local maximum power points, but not global maximum
power points.

Recently, numerous scholars have proposed intelligent MPPT
methods for PV module arrays [9–20] to track maximum power
points accurately and improve dynamic and steady-state tracking
performance. However, these methods are applicable to MPPT only
in conditions where the modules in the PV module arrays are not
shaded. Multi-peak output curves occur frequently when modules
in PV module arrays are partially shaded. Therefore, the develop-
ment of an algorithm capable of accurately tracking maximum
power points on complex and nonlinear output curves is critical.
Scholars have proposed various algorithm architectures that are
capable of tracking global maximum power points when modules
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Table 1
Electrical specifications of the SANYO HIP 2717 PV modules.

Maximum output power (Pmp) 27.8 W
Maximum power point current (Imp) 1.63 A
Maximum power point voltage (Vmp) 17.1 V
Short-circuit current (Isc) 1.82 A
Open-circuit voltage (Voc) 21.6 V
Module length and width specifications 496 mm � 524 mm
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are shaded. Among these, a two-stage method for tracking global
maximum power points was suggested in [21]. However, when
the global maximum power points are located to the left of the
load line, this method could not track the maximum power points.
In addition, this method is applicable only to tracking dual-peak
characteristics. Another two-stage method for tracking global max-
imum power points was proposed in [22]. This method involved
using a scanning program to determine curve regions containing
global maximum power points. The program then applied the vari-
able step size perturb-and-observe method to track the global
maximum power points. However, this method must compare
the maximum power points in each region before the global max-
imum power point can be derived, thereby limiting the tracking
speed.

An MPPT algorithm built on the sequential extremum-seeking
method was presented in [23]. This algorithm was built using
approximate models and analysis of PV modules under different
shading conditions. Staged searches are performed within the
entire tracking range. Thus, this method provides higher comput-
ing efficiency compared with that of the sweeping search method.
However, because this method adopts approximate models of PV
module array shading characteristics, steady-state errors occur in
the model and module parameters. A novel MPPT algorithm using
artificial neural networks (ANNs) and fuzzy logic controllers was
proposed in [24]. These ANNs are trained based on shading data
obtained from the PV module arrays that use three-layer feed-
forward training to determine global maximum power point volt-
age. Thus, this algorithm is connected to system parameters and
requires the use of sunlight and temperature data to determine
global maximum power points. These data are difficult to obtain
because sensors must first be installed to obtain information. Other
experts and scholars have proposed replacing the single module
array of maximum power point trackers that have been used tradi-
tionally with multiple-tracker architecture [25]. This architecture
would avoid an excessive influence on the overall system power
generation when only several modules are shaded or fail. Although
this method effectively increases overall power generation effi-
ciency, numerous direct current (DC)–DC converters must be used,
which raises equipment costs. Several papers [26,27] have been
proposed to improve the dynamic and steady state responses of
MPPT by adaptively tuning tracking step size. Although these
methods can successfully improve the dynamic and steady state
tracking performance at a specific scaling factor, an optimal scaling
factor is difficult to determine due to the scaling factor is not the
same under different operation conditions. In [28], a monotonically
decreased tracking step size was adopted to track the exact maxi-
mum power point, but the implementation of this technique is
rather complex. Some soft computing methods [29–31] are devel-
oped for MPPT algorithm under fast changing environments. These
methods can rapidly calculate current maximum power points, but
highly complex calculations are required. Therefore, they are not
suitable for practical application. In [32], chaos search method
was proposed to accurately track the global maximum power
point. However, experimental results did not verify the effective-
ness of this method.

Recently, various scholars have presented MPPT techniques for
PV module arrays based on PSO algorithms [33–38] to improve
dynamic response speed. However, the characteristics of modules
under partial shading were not considered in [33]. Thus, the
method by [33] is applicable for MPPT only when all modules are
under identical sunlight conditions. Although the method in [34]
tracks global maximum power points effectively under conditions
of varying amounts of shade, this method can be applied only to
systems containing multiple converters. In addition, although the
method in [35] can track global maximum power points with
multi-peak characteristic curves, the learning factors and weight
values in the algorithm are fixed. Thus, tracking performance lacks
robustness, causing low success rates in the tracking of global
maximum power points with limited iteration numbers. When
maximum power points are tracked successfully, the dynamic
response speed is slow. Improved PSO algorithms were presented
in [36–38]. The method proposed by [36] lacks system design cri-
teria and practical design considerations. Reference [37,38]
improved the traditional PSO algorithm for application to shaded
PV module arrays. However, the linear decreasing method was
used for parameter selection in this PSO algorithm. This parameter
selection is not optimized for PV module arrays with nonlinear
characteristics, particularly characteristics that occur under shaded
conditions.

Therefore, in this study, the parameters of a retentive PSO algo-
rithm [39] were adjusted using nonlinear methods to shorten
tracking time and develop an MPPT method that is superior to
the traditional MPPT methods used in PV module arrays under
conditions of partial module shading or failure. The proposed
method showed increased effectiveness in MPPT when multi-
peak P–V characteristic curves appeared in the PV module arrays.
2. Shading and failure characteristics in PV module arrays

Arrays composed of HIP 2717 PV modules [40] that are pro-
duced by SANYO Electric Co., Ltd. were the test objects in this
study. Table 1 shows the electrical specifications of these modules
under standard testing conditions (AM1.5, sunlight intensity of
1000W/m2 and PV module temperature of 25 �C).

2.1. PV module simulator circuitry

To facilitate experimentation on PV module array shading and
failure characteristics, an HIP 2717 PV module simulator contain-
ing adjustable partial shadow and failure circuitry was used, as
shown in Fig. 1 [41]. The circuit architecture comprised a Darling-
ton pair amplification circuit, an output current limiter, and a volt-
age stabilization circuit to enable implementation of PV modules
containing various shading characteristics. Variable resistors VRIsc
and VRVoc were adjusted to possess both open-circuit voltage and
short-circuit current output characteristics at various shade ratios.
The RB and VRVoc divider circuits were used to adjust shade ratios.
When a VPV power supply is not provided, the PV module simulator
does not contain output power; this is equivalent to setting the PV
module to failure conditions.

The BJT transistor 2N3055, with ratings of IC = 15 A, VCEO = 60 V,
Ptot = 115W, and hFE = 20, was chosen for the output transistor Q2.
Then, the 2N2219, with ratings of IC = 0.8 A, Ptot = 3 W, VCEO = 30 V,
and hFE = 20, was chosen for Q1 to form a Darlington amplifier with
Q2. Accordingly, the 2N1815, with ratings of IC = 150 mA,
Ptot = 400 mW, VCEO = 50 V, and IB = 50 mA, was chosen for Q3 and
Q4 to serve as the base current driver of Q1.

In the PV module simulator circuit, the resistance values of RA,
RB, RC and RD are given 2 kX, 2 kX, 2X, and 510X, respectively.
According to the shadow ratios of a PV module, the open-circuit
voltage, Voc, and short-circuit current, Isc, can be determined
according to their I–V characteristic curves, using either a



Fig. 1. PV module simulator circuitry.

K.-H. Chao et al. / Applied Energy 158 (2015) 609–618 611
simulation or experiment. Therefore, the values of VRIsc and VRVoc

in the proposed PV module simulator can be determined for
shadow ratios ranging from 0% to 80%. In the PV module simulator
circuit, variable resistors of 5 kX and 1 kX are chosen for VRIsc and
VRVoc, respectively.
2.2. Analysis of PV module array series and parallel characteristics

2.2.1. Characteristics in conditions without shading or failure
In a M-series N-parallel PV module array without shading or

failure, if the power point voltage, maximum power point current,
and maximum power point of a single PV module are represented
by Vmp, Imp, and Pmp, respectively, then the maximum power point
voltage of the M-series N-parallel array is M � Vmp, the maximum
power point current is N � Imp, and the maximum power point is
M � N � Pmp.
2.2.2. Characteristics in conditions with shading or failure
Whenmodules in the module array fail, the modules form loops

through bypass diodes to maintain some generating capacity in the
PV module array. Although these diodes improve the output power
reductions exhibited when several modules fail, the diodes cannot
improve the reductions in output voltage and current that occur
when modules are shaded. In addition, when the PV module-
shading ratio becomes excessively high, the output power exhibits
dual or multiple peaks. This prevents MPPT from controlling the
module arrays to operate at the actual maximum power points.

Because of these characteristics in actual PV module arrays, a
SANYO HIP 2717 module simulator [40] was used in this study.
The simulator was set to various shade ratios and failure condi-
tions to assemble PV module arrays with different series–parallel
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Fig. 2. P–V characteristic curves of the four-series one-parallel system under
normal operating conditions and under 30% shading conditions when various
numbers of modules failed.
configurations for MPPT testing. Fig. 2 shows a four-series one-
parallel P–V array characteristic composed of SANYO HIP 2717
PV modules. These P–V characteristic curves were obtained at
30% shading conditions (sc) for different numbers of shaded mod-
ules. The figure shows that multiple peaks occurred in the P–V
characteristic curve when partial shading occurred on several array
modules. When failure occurred in the PV module array, each mod-
ule that failed lost the ability to function and did not output elec-
tric current to supply the load. The electric current from the
working modules flowed through the bypass diode of the failed
modules, thereby enabling the working modules to continue func-
tioning normally. Fig. 3 presents the P–V output characteristic
curves for different numbers of failed modules. The figure shows
that multiple peaks did not occur in the P–V characteristic curves
when some modules of the same series array failed.

3. MPPT method using the traditional and proposed PSO
algorithm

Kennedy and Eberhart proposed the PSO algorithm in [39]. This
concept originates from group-behavior theory and was inspired
by the observation that groups of birds and fish pass messages
between individual members to enable the entire group to move
forward toward the same objects and directions. The PSO algo-
rithm imitates this biological behavior when seeking benefit-
maximization methods for an entire group.

3.1. MPPT method using the traditional PSO algorithm

The steps of the traditional PSO algorithm are as follows.

Step 1: Set the number of particles P and the iteration numbers
N.

Step 2: Initialize the value of each particle (in this study, this is
duty cycle D of the boost converter). Begin initial move-

ment speed V j
i for each particle. Initialize the individual

optimal D value Pbest (i.e., the initial D value) for each
particle. Initialize the optimal D value Gbest for all
particles.

Step 3: Given cognition-only learning factor C1, social-only
learning value C2, and inertia weightW, insert the initial
D values for each particle into (1) to obtain the newest
speed. Update the D value in (2).

Vjþ1
i ¼ W � V j

i þ C1 � rand1ð�Þ � ðPbest;i � P j
i Þ

þC2 � rand2ð�Þ � ðGbest � P j
i Þ

ð1Þ
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Fig. 3. P–V characteristic curves of the four-series one-parallel system under
normal operating conditions and under conditions when various numbers of
modules failed.
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Pjþ1
i ¼ Vjþ1

i þ P j
i ð2Þ

Step 4: Compare the power values produced by Pjþ1
i and P j

i at
the D value and substitute the larger value for Pbest,i.
Step 5: Compare the power values produced by Pbest,i and Gbest at
the D value and substitute the larger value for Gbest.
Step 6: Repeat Steps 3–5 until completing the set number of
iterations.

The relevant parameters used in traditional PSO are explained
as follows.

Number of particles: P represents the number of points tracked
at different initial duty cycle D values.
Iteration number: N denotes the number of times each particle
moves.
Cognition-only learning factor: C1 represents the learning param-
eters associated with individual particles.
Social-only learning factor: C2 denotes the learning parameters
associated with other particles.
Inertia weight: W represents the correlation with the most
recent particle movement distance.

V j
i : This variable represents the movement speed of the ith par-

ticle during the jth iteration.

P j
i : This variable denotes the duty cycle D value for the ith par-

ticle during the jth iteration.
Rand1(�): This variable represents a value between 0 and 1 gen-
erated by the first random number generator.
Rand2(�): This variable denotes a value between 0 and 1 gener-
ated by the second random number generator.
Pbest,i: This denotes the optimal duty cycle D value for the ith
particle.
Gbest: This variable represents the optimal duty cycle D value for
all particles.

In general, C1, C2, and W in the traditional PSO algorithm are
fixed values set to W = (10 � C1 � C2)/10.
3.2. MPPT method using the proposed PSO algorithm

A traditional PSO-based MPP tracker has been specifically
designed to track the global MPP on a characteristic curve with
multiple peaks, but in the absence of robustness, since all the
weights remain constant during the entire iterative process. In
other words, it gives a low probability that the MPP can be success-
fully tracked within a specified number of iterations, and gives a
slow dynamic response in a successful MPP tracking event. In view
of this, this work is proposed as an improved version of typical
tracking algorithms when dealing with the global MPP tracking
(a) (b)

Fig. 4. Parameter value changes in the
issue experienced in an array involved partially shaded or even
malfunctioning PV modules.

The proposed PSO algorithm involves adjusting Step 3 of the
traditional PSO. Variables C1, C2, and W were altered to calculate
(3)–(5) to obtain linear changes; thus, C1, C2, and W vary for each
iteration.
C1 ¼ C1;max � ðC1;max � C1;minÞ � 2 j þ 1
2N þ 1

ð3Þ
C2 ¼ C2;min þ ðC2;max � C2;minÞ � 2 j þ 1
2N þ 1

ð4Þ
W ¼ Wmax � ðWmax �WminÞ � 2 j þ 1
2N þ 1

ð5Þ

The parameters added for the proposed PSO are explained as
follows.

Cognition-only learning factor upper limit: C1,max represents the
upper limit to the learning parameters associated with the
particles.
Cognition-only learning factor lower limit: C1,min denotes the
lower limit to the learning parameters associated with the
particles.
Social-only learning factor upper limit: C2,max represents the
upper limit to the learning parameters associated with other
particles.
Social-only learning factor lower limit: C2,min denotes the lower
limit to the learning parameter associated with other particles.
Inertia weight upper limit: Wmax represents the upper limit to the
correlation with movement distances of individual particles.
Inertia weight lower limit: Wmin denotes the lower limit to the
correlation with movement distance of individual particles.

For example, if C1,max = 4, C1,min = 1, C2,max = 4, C2,min = 1,
Wmax = 0.8, Wmin = 0.2, and N = 10, (3)–(5) can be calculated to
change C1, C2, and W (shown in Fig. 4). The figure shows that C1
and W in the proposed PSO decreased when the iteration number
increased, which indicates that the ability to reference the optimal
positions of the individual particles decreased when the iteration
number increased. However, C2 increased when the iteration num-
ber increased, indicating that the global optimal particle reference
results gained more weight when the iteration number increased.

The steps for the proposed PSO algorithm are nearly identical to
those of the traditional PSO algorithm. The proposed algorithm
only differs because (3)–(5) are adopted for the C1, C2, and W
parameters in Step 3 to enable adjustments according to the itera-
tion number.
(c)

proposed PSO: (a) C1; (b) C2; (c) W.



Fig. 5. Proposed PSO maximum power tracking controller architecture.

Table 2
Rated component-design values of the DC/DC boost converter.

Element names Specifications

Inductor (L) 1 mH
Capacitor (Cin) 47 0lF/450 V
Capacitor (Cout) 470 lF/450 V
Switching frequency (f) 20 kHz
Transistor IRF460 (500 V/20 A)
Diode DSEP30-12A (1200 V/30 A)

Table 5
Selected indicative test cases.

Case Partial shading or failure conditions Number of P–V
curve peaks

1 1-series 1-parallel: 0% shading 1
2 2-series 2-parallel: 0% shading + 0% shading + 0%

shading + 0% shading
1

3 4-series 1-parallel: 0% shading + 0% shading
+ 30% shading + 50% shading

3

4 4-series 1-parallel: 0% shading + 30% shading
+ 50% shading + 70% shading

4

5 4-series 1-parallel: 50% shading + failure + 30%
shading + 0% shading

3

6 2-series 2-parallel: (0% shading + 0% shading) //
(failure + 0% shading)

2

Note: The symbol + represents the series connections and the symbol // represents
parallel connections.
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3.3. MPPT scheme using the traditional and proposed PSO method

Fig. 5 presents the maximum power point tracker architecture
based on the traditional and proposed PSO algorithm for the PV
module arrays. This architecture contained two main subsystems:
(1) a DC/DC boost converter and (2) an traditional or the proposed
PSO MPPT controller. Using the traditional and proposed PSO steps
described in Subsection 3.1 and 3.2, the PV module array system
applied the traditional and proposed PSO maximum power point
controller to control the duty cycle of the boost converter. This
enabled the PV module array to output maximum power despite
that several modules had been partially shaded or had failed.

Table 2 presents the component parameter values for the DC/DC
boost converter circuitry used in this study [42]. Tables 3 and 4
show the relevant parameters for the traditional and proposed
PSO algorithms, respectively. Table 5 depicts the PV module array
tests performed under six working conditions. Testing was per-
formed in accordance with the PSO algorithm steps shown in
Section 3.
Table 3
Parameter settings of the traditional PSO algorithm.

Parameter name Parameter values

Particle number (P) 3
Iterations (N) 30
Cognition-only learning factor (C1) 3
Social-only learning factor (C2) 3
Inertia weigh (W) 0.4

Table 4
Parameter settings of the proposed PSO algorithm.

Parameter name Parameter values

Particle number (P) 3
Iterations (N) 30
Cognition-only learning factor upper limit (C1,max) 3
Cognition-only learning factor lower limit (C1,min) 1
Social-only learning factor upper limit (C2,max) 3
Social-only learning factor lower limit (C2,min) 1
Inertia weigh upper limit (Wmax) 0.8
Inertia weigh lower limit (Wmin) 0.4
The PIC181F8720 microprocessor manufactured by Microchip
Technology was used to implement the conventional PSO method
in the empirical test. First, the parameter values in the iteration
formula of Table 3 were set, with the iteration number being set
to zero. The initial position of each particle was set randomly
(i.e., duty cycle of the boost converter). The PWM control signal
with this initial value was transmitted to the boost converter to
activate a power semiconductor switch. Subsequently, the output
voltage and current values of the PV module array were extracted
using a sensor and transmitted to the microcontroller through
the analog-to-digital converter to calculate the power value. Sub-
sequently, the initially settings are described as follows. The
calculated power value and particle position (duty cycle of the

boost converter) were predetermined as the Pbest,i and V j
i of the first

iteration, respectively. The highest power of a particle among all of
the particles and the relative position of the particle (duty cycle)

were set to be the Gbest and V j
i of the first iteration. The aforemen-

tioned settings were substituted into the PSO kernel iteration
formula, increasing each iteration number by 1. If a particle
attained a power value exceeding that of the Pbest,i value after a

duty cycle update, then the Pbest,i and V j
i values would be updated.

If any of the particles attained a power value higher than that of

the Gbest value, then the Gbest and V j
i values would be updated,

completing the iteration. These steps were repeated until the
maximal iteration number was achieved. The iteration process of
the proposed PSO method was realized using a process identical
to that of the conventional PSO method, except that the
adjustment of parameter values in the iteration formula were
adjusted according to Table 4 and (3)–(5).

4. Measurement results for the traditional PSO and proposed
PSO tracking methods

This section presents the measurements of the characteristic
curves for the six working conditions shown in the PV module
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simulator circuitry composition table in Fig. 1 under various
shading ratios and failure conditions. PIC microcontrollers were
used to implement the traditional and proposed PSO MPPT
methods. The tracking performances were compared.

4.1. Characteristic curves under six working conditions

Figs. 6–11 present the current–voltage (I–V) and P–V character-
istic curves measured under the six working conditions that were
depicted in Table 5. Figs. 6 and 7 show that short-circuit current Isc
did not change when two PV modules were connected in a series,
although the open-circuit voltage Voc doubled. When connected in
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Fig. 6. The I–V and P–V characteristic curves for a one-series one-parallel module
array without shading or failure.
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Fig. 7. The I–V and P–V characteristic curves for a two-series two-parallel module
array without shading or failure.
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Fig. 9. The I–V and P–V output characteristics under conditions of 0% shading + 30%
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+ 0% shading) // (failure + 0% shading) in a two-series two-parallel module array.
parallel, the open-circuit voltage Voc did not change, whereas the
short-circuit current Isc doubled. Therefore, in conditions at fixed
temperatures, fixed irradiation, and without partial shading or fail-
ure, the size of the open-circuit voltage Voc in the PV module array
and the number of series modules were proportional. Short-circuit
current Isc was also proportional to the number of parallel modules
and multiple peaks did not occur in the P–V characteristic curves.
Figs. 8 and 9 indicate that N number of peaks occurred in the
P–V characteristic curve when N modules received different ratios
of shade within the same series. Fig. 10 indicates that the P–V
characteristic curves were unaffected by failure and presented N
number of peaks when module failure occurred within a single
series in an array and N modules were tested using different ratios
of shade. Fig. 11 presents two-series two-parallel module array
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configurations with all modules not shaded in one series and fail-
ure in one module in the other series. In this connection configura-
tion, although three modules were not shaded and only one
module failed, two peaks appeared in the P–V characteristic curve.
4.2. PV module array MPPT measurements

In this study, the measured waveforms were power characteris-
tic curves that were obtained by using Excel to multiply voltage
and current signals after recording the voltage and current data
from the module arrays. This section presents how observations
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Fig. 12. Voltage, current, and power response waveforms for the PV module arrays
during MPPT.
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Fig. 13. Measurement results from a one-series one-parallel module array without
shading: (a) traditional PSO method (Pmp = 21.74 W); (b) proposed PSO method
(Pmp = 21.95 W).
were performed and how the advantages and disadvantages of
the two measured waveforms were compared to facilitate future
comparisons of the traditional PSO and proposed PSO measure-
ment results.

For example, the horizontal timeline shown in Fig. 12 contains
two intervals: t0 � t1 and t1 � t2. The time between t0 and t1 was
the preparation time for the duty cycle to approach 0. At this time,
the voltage approached the open-circuit voltage and the current
was extremely low. Because a fixed duty cycle was adopted, the
voltage, current, and power were all fixed values. The time
between t1 and t2 was the time required by the duty cycle to
change from the 1st iteration to the 30th iteration. To facilitate
observation of these altered results, this time was extended by a
short period after the duty cycle changed for each iteration. There-
fore, the total time required for the 30 iterations was approxi-
mately 0.12 s and the average iteration time was approximately
0.004 s (=0.12/30 = 4 ms). The time between t1 and t2 indicates that
the voltage, current, and power changed following alterations in
the duty cycle. At this time, power increased rapidly from P1 to
Pa, only requiring (ta � t1) time. The interval in which power
increased from Pa to Pb was (tb � ta) time. Beginning at tb, the
power curve tended to gradually move toward a stable value until
stopping at t2.

The results in Fig. 12 indicate that short (ta � t1) time repre-
sented increased speeds in power tracking from P1 to Pa. When
the power value at time tb approached the power value at time
t2, this indicated that the MPPT beginning at tb was gradually sta-
bilizing. These methods were used to observe and compare the
performance advantages and disadvantages of the traditional and
proposed PSO methods. The performance was based on whether
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Fig. 14. Measurement results from a two-series two-parallel module array without
shading: (a) traditional PSO method (Pmp = 95.64 W); (b) proposed PSO method
(Pmp = 96.51 W).
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increased Pb values could be tracked and which method provided
the faster response speed at 30 iterations.

Fig. 13(a) and (b) show the measured response waveforms for
the traditional and proposed PSO methods for Case 1, which was
previously shown in Table 5. In the tracking iteration formula of
the proposed PSO, the weighting (W) and learning factors (C1 and
C2) varied as the iteration number increased. In the initial iteration
period, because the working point was distant from the MPP, a
high weighting and large steps were adopted for tracking MPP. In
the initial tracking period, maximal power values that were
tracked by individual particles exerted a considerable effect; thus,
a large cognition-only learning factor (C1), which accelerated the
tracking speed of the proposed PSO method compared with that
of the conventional one. As the iteration number increased, the
tracked working point would gradually approach the global MPP
and the effect of the individual particles’ maximal power value
would decrease as the effect of the global particles’ maximal power
value increased. Thus, the W and C1 values were reduced, and the
social-only learning factor (C2) was added to reduce oscillations
near the tracked working point, thereby improving the steady-
state tracking performance of the maximal power tracker. As
shown in Fig. 13(a), the tracking time of the conventional PSO
required 20 ms from t1 to ta, whereas the tracking time required
only 15 ms from t01 to t0a when the proposed PSO was adopted.
Thus, the measured quantitative data verified that the proposed
PSO had a tracking time 5 ms faster than that of the conventional
PSO. After 30 iterations, the P0

b value (21.95 W) from the proposed
PSO method was greater than the Pb value (21.74W) of the tradi-
tional PSO method; therefore, the proposed PSO method exhibited
superior performance. Therefore, a comparison of the results
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Fig. 15. Measurement results for a four-series one-parallel module array under
working conditions of 0% shading + 0% shading + 30% shading + 50% shading: (a)
traditional PSO (Pmp = 60.14 W); (b) proposed PSO (Pmp = 60.36 W).
presented in Fig. 13(a) and (b) indicated that although both meth-
ods could track maximum power points, the (t0a � t01) time obtained
using the proposed PSO method was shorter than the (ta � t1) time
obtained using the traditional PSO method.

Fig. 14(a) and (b) depict the measured response waveforms for
the traditional and proposed PSO methods for Case 2, which was
previously shown in Table 5. In the initial iteration period, the W
and C1 values of the proposed PSO method’s tracking iteration for-
mula were increased for maximal power tracking because the
working point was distant from the MPP. The effect of the individ-
ual particles’ maximal power value was considerable in the initial
tracking period; thus, a large cognition-only learning factor (i.e.,
C1) was adopted, which enabled a faster initial tracking speed in
the proposed PSOmethod than in the conventional one. As the iter-
ation number increased, the tracked working points increased and
gradually approached the MPP. In addition, the effect of the indi-
vidual particles’ maximal power value decreased, whereas the
effect of the global particles’ maximal power value increased. Thus,
theW and C1 values were reduced, and the social-only learning fac-
tor (i.e., C2) was incorporated to reduce oscillations near the
tracked working point. Consequently, the final tracked maximal
power value was high. The methods for adjusting the iteration
parameters of the proposed PSO are listed in Table 4 and (3)–(5).
The design of the conventional PSO adopted iteration parameters
with fixed values (Table 3); thus, the conventional POS method
lacked robustness. The figures show that the tracking time t0a
obtained using the proposed PSO method was close to t0b at the
beginning of the test and the final maximum power value was
high. Therefore, the proposed PSO method exhibited superior
tracking performance compared with the traditional PSO method.
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Fig. 16. Measurement results for a four-series one-parallel module array under
working conditions of 0% shading + 30% shading + 50% shading + 70% shading: (a)
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0

10

20

30

40

50

60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.05 0.10 0.15 

Time (sec)

I pv
 (A

)
I pv

 (A
)

t1 ta tb

Pb

Ppv

Vpv

Ipv

(a) 

0

10

20

30

40

50

60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.05 0.10 0.15 
Time (sec)

t1 t' a'≈ tb'

Pb'

Ppv

Vpv

Ipv

(b) 

V
pv  (V

)
P

pv  (W
)

V
pv  (V

)
P

pv  (W
)

Fig. 17. Measurement results for a four-series one-parallel module array under
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tional PSO (Pmp = 43.66 W); (b) proposed PSO (Pmp = 44.01 W).
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Figs. 15–18 depict the tracking response waveforms measured
by performing MPPT using both the traditional and proposed PSO
methods in module arrays containing shading or failure. Fig. 15
presents the measured waveforms for current, voltage, and power
tracking in the four-series one-parallel module array for Case 3
under working conditions of 0% shading + 0% shading + 30% shad-
ing + 50% shading.

Fig. 15(a) and (b) indicate that both methods approached the
maximum power point within a short period. However, (t0a � t01)
time was shorter than (ta � t1) time. After 30 iterations, P0

b was
slightly greater than Pb. Thus, the proposed PSO method was supe-
rior to the traditional PSO method.

Fig. 16 shows the measured current, voltage, and power track-
ing waveforms for the four-series one-parallel module array for
Case 4 under working conditions of 0% shading + 30% shading
+ 50% shading + 70% shading.

Fig. 16(a) and (b) indicate that the traditional PSO method was
consistently trapped at local maximum power points within 30
iterations. The proposed PSO method approached the true
maximum power point within the elapsed (t0a � t01) time. In addi-
tion, P0

b (42.39W) was greater than Pb (34.38 W). Thus, the tracking
performance of the proposed PSO was superior to that of the
traditional PSO.

Fig. 17 presents the measured current, voltage, and power
tracking waveforms for the four-series one-parallel module array
for Case 5 under working conditions of 50% shading + failure
+ 30% shading + 0% shading.

Fig. 17(a) and (b) show that the (t0a � t01) time for the proposed
PSO was shorter than the (ta � t1) time of the traditional PSO.
The initial t0a approached t0b. In addition, P0
b was slightly greater

than Pb after 30 iterations. Therefore, the tracking performance of
the proposed PSO was superior to that of the traditional PSO.

Fig. 18 presents the measured current, voltage, power tracking
waveforms for the two-series two-parallel module array for Case
6 under conditions of (0% shading + 0% shading) // (failure + 0%
shading).

Fig. 18(a) and (b) indicate that the initial (t0a � t01) time for the
proposed PSO was shorter than the (ta � t1) time for the traditional
PSO. In addition, P0

b from the proposed PSO was slighter greater
than Pb from the traditional PSO after 30 iterations. Therefore,
the tracking performance of the proposed PSO was superior to that
of the traditional PSO.

5. Conclusions

This study proposed an improved PSO algorithm for MPPT in PV
module arrays. To accelerate the efficiency and performance of PSO
tracking, an exponential-form parameter control method was pre-
sented. This method used exponential increases or decreases in the
cognition-only learning factor, the social-only learning factor, and
the inertia weight to reduce iteration numbers and improve track-
ing success. The results showed that the proposed PSO algorithm
could track actual maximum power points faster and more accu-
rately in PV module arrays under conditions of partial module
shading or failure than could the traditional PSO algorithm. In
addition, the test results from six selected partial shading or failure
conditions indicated that the average iteration numbers required
for successful MPPT using the proposed PSO was 21.1. By contrast,
the average iteration number required for success using the
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traditional PSO was 38.3. These results confirm that the proposed
PSO method improved the success rate of tracking. Therefore,
applying the proposed PSO method to MPPT in PV module arrays,
particularly when various modules are partially shaded or have
failed, is feasible.

Although various configuration arrays composed of different PV
modules exhibited an identical trend in slopes, the slopes and
slope variations of the P–V characteristic curves were dissimilar.
Therefore, to improve the dynamic and steady-state performance
of the maximal power tracker, the proposed PSO method can
adjust the parameter values of the PSO iteration formula through
online adaptive tuning, only according to the slope characteristics
of the individual P–V characteristic curves. Therefore, relevant
quantitative design methods can be discussed and analyzed in
future research.
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